C++: считаем определитель матрицы
Вообще-то программировать расчёт определителей не нужно. Их умеет считать, скажем, встроенная функция МОПРЕД
из Excel:
- набираем элементы матрицы в смежных ячейках, например, матрица размерностью 4*4 показана на картинке;
- в нужной ячейке вводим формулу (в нашем случае
=МОПРЕД(A1:D4)
и нажимаем Enter :)
Не труднее вычислить и в MathCAD - просто нажать кнопку на панели матриц...
Но иногда нужен алгоритм, а не ответ... вот немного кода на консольном C++, на совершенство он не претендует, но нули в матрице или "не тот" порядок элементов смущать функцию determinant
не должны. Пример из main
- 1001-й на работу с динамической матрицей средствами C++ :) Остальное закомментировано в исходнике.
#define bool int #define true 1 #define false 0 int search (double **a, int m, int n, double what, bool match, unsigned int &uI, unsigned int &uJ, unsigned int starti, unsigned int startj) { // Поиск в матрице a[m][n] элемента с указанным значением what // Возвращаеются его номер строки и столбца uI, uJ, если элемент найден. // match - искать равный элемент или отличный от указанного. // Вернёт 0 - не найдено, не 0 - найдено if ((!m) || (!n)) return 0; if ((starti >= n) || (startj >= m)) return 0; for (unsigned int i = starti; i < n; i++) for (unsigned int j = startj; j < m; j++) { if (match == true) { if (a[i][i] == what) { uI = i; uJ = j; return 1; } } else if (a[i][j] != what) { uI = i; uJ = j; return 1; } } return 0; } void swaprows (double **a, int n, int m, unsigned int x1, unsigned int x2) { //Меняет в матрице a[n][m] строки с номерами x1 и x2 местами if ((!n) || (!m)) return; if ((x1 >= n) || (x2 >= n) || (x1 == x2)) return; double tmp; for (unsigned int x = 0; x < m; x++) { tmp = a[x1][x]; a[x1][x] = a[x2][x]; a[x2][x] = tmp; } return; }; void swapcolumns (double **a, int n, int m, unsigned int x1, unsigned int x2) { //Меняет в матрице a[n][m] столбцы с номерами x1 и x2 местами if ((!n) || (!m)) return; if ((x1 >= m) || (x2 >= m) || (x1 == x2)) return; double tmp; for (unsigned int x = 0; x < n; x++) { tmp = a[x][x1]; a[x][x1] = a[x][x2]; a[x][x2] = tmp; } return; }; double determinant (double **a, unsigned int n) { //Вычисление определителя квадратной матрицы a[n][n] unsigned int m = n; if (m == 0) return 0; if (m == 1) return a[0][0]; if (m == 2) return (a[0][0] * a[1][1] - a[1][0] * a[0][1]); bool sign = false; // смена знака определителя. по умолчанию - нет double det = 1; // определитель double tmp; unsigned int x, y; for (unsigned int i = 0; i < n; i++) { // цикл по всей главной диагонали if (a[i][i] == 0) { // если элемент на диагонали равен 0, то ищем ненулевой элемент в матрице if (!search(a,m,n,0, false, y, x, i, i)) return 0; // если все элементы нулевые, то опр. = 0 if (i != y) { // меняем i-ую строку с y-ой swaprows(a,m,n,i, y); sign = !sign; } if (i != x) { // меняем i-ый столбец с x-ым swapcolumns(a,m,n,i, x); sign = !sign; } // таким образом, в a[i][i], теперь ненулевой элемент. } // выносим элемент a[i][i] за определитель det *= a[i][i]; tmp = a[i][i]; for (x = i; x < m; x++) { a[i][x] = a[i][x] / tmp; } // таким образом a[i][i] теперь равен 1 // зануляем все элементы стоящие под (i, i)-ым, // при помощи вычитания с опр. коеффициентом for (y = i + 1; y < n; y++) { tmp = a[y][i]; for (x = i; x < m; x++) a[y][x] -= (a[i][x]*tmp); } } if (sign) return det*(-1); return det; }; #include <stdio.h> int main () { const int n=4; int data[n*n] = { 5,4,3,2, 11,-1,2,7, 0,1,0,4, -13,79,1,2 }; int i,j,k=0; double **a = new double * [n]; for (i=0; i<n; i++) a[i] = new double [n]; for (i=0; i<n; i++) for (j=0; j<n; j++) a[i][j] = data[k++]; printf ("\nDet(A)=%.1f",determinant(a,n)); return 0; }
14.06.2013, 19:40 [39265 просмотров]